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LETTER TO THE EDITOR 

Large polarons with quadratic electron-phonon 
interaction 
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Department of Physics, University of Ankara, Ankara, Turkey 

Received 13 March 1989 

Abstract. The Friihlich Hamiltonian of large polarons with quadratic electron-phonon 
interaction is obtained and the ground-state energy is calculated by using second-order 
perturbation theory. 

The polaron concept as usually understood arises from the consideration of the linear 
interaction of a single electron, moving slowly in the conduction band of an otherwise 
insulating material, with the longitudinal optical phonon field of the associated ionic 
lattice. The electron distorts and displaces its surrounding ions, establishing a polar- 
isation field in the crystal, which acts back on the electron whose properties are then 
modified; in particular, the electron acquires a self-energy and an enhancement of its 
Bloch effective mass. In the language of field theory these effects arise from the emission 
and reabsorption of virtual quanta of the longitudinal optical phonon field of the material 

Of the above five conditions that characterise the conventional polaron only the first 
is satisfied exactly, and the others are not always taken into account in existing studies 
(see [2] and references therein). The purpose of this Letter is to consider electron- 
phonon interaction with linear and quadratic terms in the phonon coordinates, and to 
calculate the ground-state energy of a large polaron within second-order perturbation 
theory. 

The polaron problem is usually formulated in terms of the Frohlich Hamiltonian (FH), 
whose important characteristics are the linearity of the electron-phonon interaction and 
the approximation of treating the lattice as a continuum. A clear and ab initio derivation 
of this Hamiltonian has been given in [3]. However, it is difficult to include non-linear 
interaction in the FH in this procedure and we will therefore follow a different approach 

The total Hamiltonian H = H,, + H I ,  is made up of two terms. The first one, H o ,  is 

[11. 

[41. 

the sum of one electron and free phonons, and will be described by 

where p = hk is the electron momentum with bare mass m and the b,+ (b,) are the 
creation (annihilation) operators for a LO phonon with wavevector q and energy no,. 
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The second term H1, corresponding to the interaction of the electron with ions and 
phonons, can be expressed in second-quantised notation as follows: 

H1 = ( k l V ( r - R 1  -Y l ) lk ' ) c i ck ,  = eXp[i(k' - k)  ' ( R I  +y1) ]vk -k , c i ck ,  ( 2 )  
k , k ' , l  k , k ' . l  

where V(r - R , )  is the ionic potential at the site R1,  and the c l  (ck) are the creation 
(annihilation) operators for the electron. If the displacement y 1  of the ion at R 1  is 
sufficiently small we can expand the exponential and keep terms up to the quadratic 
ones in (2): 

exp[i(k - k )  - y l ]  = 1 + i(k' - k )  * y l  - i [ (k '  - k )  . y l ] *  

and taking 

where only the longitudinal phonon modes are considered. The first term in (3) is 
independent of the lattice displacements and can be added to Ho,  so the bare electron 
mass m is now replaced by the Bloch effective mass. 

If we assume that vk- k' is given by 

Vk-k, = - 4 n e e * / V / k  - k'I2 ( 4 )  
with an effective ionic charge e* [SI  

(e*)2 = ( V M w i / 4 n N ) ( l / & ,  - 1 / ~ ~ )  

where M is the reduced ionic mass and E ,  and c0 are dielectric constants of the medium, 
we can immediately obtain the interaction term of the FH and a new term representing 
the non-linear electron-phonon interaction. Thus the modified FH becomes 

+ HC) 
P' 
2m 4 4 

H = - + E hw,b , fb ,  + 2 Mq(b,f 

+ 2 Mb(b , f  e-iq'r + HC) ( b ;  e-iq"r + HC) 
434' 

where 

M ,  = i(hw,/qu'/2) ( 4 n a / V ) ' / *  (7a) 
and 

Mb = a h2wi/2Nuee*. 

Here V is the volume of the system, a is called the coupling constant, showing the 
electron-phonon coupling strength, and U = ( 2 m o ~ ~ / h ) ~ ' ~ .  In (6) the LO phonons are 
assumed to be dispersionless, i.e. wq = wo.  
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It should be pointed out that with this choice of in the form of (4), M, is 
proportional to l / q  as expected for LO phonons and Mi is independent of q,  which 
considerably simplifies our calculations. 

Even without the non-linear term, the FH has not been exactly solved so far. Frohlich 
and co-workers [6] have approximately solved the polaron problem for weak coupling 
strength, that is for a < 1. H o  is the unperturbed part of the Hamiltonian which gives 
the ground-state energy E ,  and H I  will be treated as a perturbation, and the second- 
order correction to E ,  is given by 

where the li) are intermediate states. In our case, only the b:b$lO) term will contribute 
to the energy and a new term 

will be added to the well known perturbation result. 
For low electron momentum p ,  the sum in (9) can be expanded as a power series in 

p ;  on changing the sums over q and qf to integrals, one obtains for the ground-state 
energy 

E -a(hw")(A + CZ) + (p2/2m)[1 - (a /6 )B  - aCJ] (10) 

where C = ( 2 m / M )  Vu3//8n3N, 

and 

1 ( q  cos 8 + qf cos d3q d 3q' J = - l j  
u 2 n 2  (42 + 9'2 + 2qqf cos r + 2 u 2 ) 3  

w i t h c o s r = c o s O c o s 8 ' + s i n 8 s i n 8 ' c o s ( q  - qf). 
The integrals Z and J diverge if one takes upper limits for q and q' as infinite. We 

therefore have an upper cut-off qc given by the maximum allowed phonon wavevector. 
Although the medium is treated as continuum in the FH, due to the discreteness of the 
lattice such a natural cut-off qc, where l/qc is of the order of the lattice spacing, will be 
realistic. In fact, the discreteness of the lattice was to a certain degree incorporated into 
the Hamiltonian in the same way for the problem of the polaron self-trapping transition 
[7-91. The constants A and B are fairly close to unity for a finite qc and equal to unity in 
the qc + 

Since a polaron is spread over many lattice celis in the continuum approximation, it 
is customary to define a polaron radius rp ,  which turns out to be equal to l / u .  The 
value of rp for alkali and silver halides is between 10 and 20 A; for II-VI and III-V 
semiconductors it is about 100 A. The latter materials have small a-values; therefore 
they are very convenient for applying our results to. 

and V/Nis the volume of the unit cell. If we take 
rp = 20a and qc = 2n /a  in the integrals I and J ,  the shift in the self-energy will be about 
3%, while the change in the effective mass is negligible. 

limit as expected. 

In (lo), m/M is of the order of 
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Although this result appears as a small correction to the ground-state energy, there 
may be cases where the non-linear electron-phonon interaction can give interesting 
results, as in recent papers for acoustical polaron mobility [lo] and quasi-one-dimen- 
sional organic conductors [ll]. 
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